Biometrics - Trust But Test

Tomáš Rosa crypto.hyperlink.cz

Biometric Identification/Verification

...automated establishment of a human identity based on their physical or behavioral characteristics.

Biometric System Topology

Jain, Ross, and Nandakumar: Introduction to Biometrics, Springer, 2011

Match Score

- It would be nice if we had a simple true/ false result.
 - As in conventional crypto.
 - But we cannot...
- All we have is a value of random variable *X* that follows two conditional distributions.
 - f(x | impostor)
 - *f*(*x* | genuine)

Base "Camel" Graph

Signal Detection Approach

False Match Rate

False Non-Match Rate

Error Distribution Functions

Receiver Operating Characteristics

Detection Error Trade-Off

ISO/IEC 19795

- Performance test methodologies for different life-cycle phases:
 - technology evaluation
 - scenario evaluation
 - operational evaluation
- We get <u>comparable results</u> with plausible <u>confidence intervals</u>.

Bunch of Parameters

- False Match Rate / False Non-Match Rate
 - attempt oriented
- False Acceptance Rate / False Rejection Rate
 - transactional version of FMR/FNMR
- Failure To Acquire
- Failure To Enroll
 - both attempt and txn-oriented versions

Biometric Data Mining

- In any life-cycle phase, we shall gather as much data as we can to estimate the performance or check we are still operating in expected margins.
- Anomalies may indicate a component malfunction or even a **fraud**.
- Again, be careful about confidence.
- Misleading statistics can be worse than none!

Biometric System and Data Analysis

Design, Evaluation, and Data Mining

DET Estimation Simulation

Confidence Intervals?!

Any Confidence, Yet?

Fair Confidence

We Can be Proud

Just a Dream...

Biometric Menagerie

- To further complicate biometrics testing, those score distributions are usually not person-independent.
 - That means the performance is **not** the same for all people.
- There are plenty of anomalies we shall be aware of to interpret the system behaviour correctly.

Sheep: An Ordinary User

Goat: Problematic FNMR

Lamb/Wolf: Easy Target and-or Effective Predator

Worms: Both FNMR and FMR Increased

Dove: Excellent User

Chameleon: Excellent Scores, Anyway(!)

Phantom: Problematic Matching, Anyway

Secret Files on Biometrics

Reactive Forensics

I am solving criminals recognition and this just works...

Reactive Forensics

I am solving criminals recognition and this just works...

Alphonse Bertillon, 1883

Turned Into Proactive Security

...such a massive invocation of the hidden algorithm design!

Turned Into Proactive Security

...such a massive invocation of the hidden algorithm design! Auguste Kerckhoffs, 1883

Contrasting Design Approach

- Classic cryptography
 - infeasible mathematical problems
- Quantum cryptography
 - intractable physical problems
- Biometric identification
 - statistical signal detection
 - intractability is usually *not* the prime concern
 - we hope the Mother Nature complexity somehow guarantees the security

Convincing Algorithms?

safe Template Revocation?

Liveness Detection?

Internal Experts Are Ready

Consultants Always Eager to Help!

They fought like seven hundred

Anyway, do the Pentest!

BIO Brute Force Attack

- Randomly generate plausible circa 1/FMR samples and put them to the test.
 - Also termed "Zero-Effort", denoting that the attacker makes no special effort to imitate the original person characteristic.
- Synthetic samples generation is quite feasible today.

BIOMETRIC INVERSE PROBLEMS

Svetlana N. Yanushkevich Adrian Stoica Vlad P. Shmerko Denis V. Popel

Cryptanalysis-Like Attacks

- Masquerade attacks, can be a variant of "Hill-Climbing" denoting the attacker iteratively improves the BIO sample data based on:
 - scoring feedback (side channels)
 - stolen template (pre-image attacks)
 - independent template trained from intercepted BIO samples (correlation attacks)
 - known scoring anomaly (differential analysis. etc.)
 - implementation faults (general hacking)

Spoofing

- The process of defeating a biometric system through the introduction of fake biometric samples.
 - (Schuckers, Adler et al., 2010)
- Particular modus operandi on how to deploy the attacking data vectors.
 - Can be seen as being orthogonal to the aforementioned ways of gaining fake samples.

Sensor-Bypass Attacks

- Do not expose API service for unrestricted automated sample verification!
 - Recall the zero-effort attack complexity is often trivial.
 - Furthermore, masquerade attacks can shift FMR significantly.

Sample Generator + Spoofing

- Spoofing techniques are, however, not "just helpers".
- They are tightly interconnected with the fake samples generator to create complex attacks, as e.g.:
 - Text-To-Speech Synthesis
 - Voice Conversion
 - Artificial Signals

Conversion Attack Example

Kinnunen et al., ICASSP 2012

Reporting Attack Impact

Kinnunen et al., ICASSP 2012

Artificial Signals Impact

Alegre et al., EUSIPCO 2012-13

Biometric Cryptography?

Cryptography Exactness

Let $y = AES_{K}(x)$ for a random *K*. Then $AES_{K}^{-1}(y) = x$, while $AES_{K\oplus 1}^{-1}(y) \neq x$ (probability ≈ 1).

• The better the algorithm is the more randomized response we get for even one-bit error.

Biometrics Fuzziness

- We seldom get the same data in the subsequent scans of the very same person.
 - Actually, this is usually a clear sign of a spoofed sample.
- To overcome this (intra-user) variability, we can employ the *biometric cryptography*.

Security with Noisy Data

Private Biometrics, Secure Key Storage and Anti-Counterfeiting

Back To the Origin

Back To the Origin

ISO/IEC 24745 Requirements

- Renewability
 - allows multiple independent *biometric references* created ad hoc
 - a particular leaked template does not compromise the other ones (provably!)
- Revocability
 - user can revoke the ability of being successfully verified by a particular template from now on
- Biocryptography is an effective way on how to achieve these goals.

Is It Enough?

- Template protection in contemporary systems is often quite questionable (*to be polite*).
- On the other hand, is it the only one problem?
 - No. We shall not push the concept of bio-keys too hard anyway.

One Key to Rule Them All...

- Conventional cryptographic keys can be freely discarded and re-generated from a scratch.
 - There is no nature-wide master-key that would compromise all these keys at once (hopefully).
- On the other hand, for all your biokeys, <u>You are the "master" key</u>!

Bio-Skimming

- Once the problem of template protection is solved, this will become a new attack vector.
 - Attackers use a fake sensor (or hack into an original one) to skim the "bio-master-key".
 - At the end of the day, how many eyes, fingers, faces, vocal tracts (etc.) do we have?
 - It is like having few master-keys for a whole life.
 - Furthermore, we prove the master-key possession by simply handing it over to almost any device that asks so (again, again, and again...).

Spoofing Still Matters!

- That said, liveness detection will be always important!
 - Remember, biometrics is nothing but a <u>signal detection</u>.
 - It all works as long as we can assume the signal is coming from a live human being!

Tamper-Resistant Sensors

- It signs the output samples with its private key to indicate it already has sampled the signal from a living individual.
 - Furthermore, the sample shall be then processed as soon as possible.
 - Otherwise, we have to mitigate the risk of a sensor compromise in the intermediate time by a further time-tamping ("LongTermVerifiable bio-samples").
 - This concept is all too often neglected in the emerging handwritten signature biometrics!

Conclusion

- We shall **require ISO 19795 methodology** during biometric application selection, comparison, and operation testing.
- Use independent penetration test to verify:
 - zero-effort attack complexity (look for automated APIs!)
 - masquerade attacks
 - spoofing possibilities
 - template security
 - system security in general (threshold settings and template tampering, etc.)

Thank You For Attention

Tomáš Rosa, Ph.D. http://crypto.hyperlink.cz

Movie Snapshots Taken From

- Tajemství hradu v Karpatech, ČR, 1978
- Císařův pekař, ČR, 1951
- The Magnificent Seven, United Artists, USA, 1960
- Slunce, seno, jahody, ČR, 1983

All the quotations of Alphonse Bertillon, Auguste Kerckhoffs, and Claude E. Shannon were purely fictional.